āž•Point Addition in Python

Recall from the discussion in Group Theory, we learnt how a generator point can be added to itself repeatedly to generate every element of the group. In this section, we'll understand how to perform this addition, and implement it in Python.

The theory behind point addition

To find the coordinates of the third point of intersection, simply calculate the slope between P and Q, and extrapolate it using the general equation of elliptic curve.

Implementation in Python

from typing import Optional

inf = float("inf")

@dataclass
class Point:
    x: Optional[int]
    y: Optional[int]

    curve: EllipticCurve

    def __post_init__(self):
        # Ignore validation for I
        if self.x is None and self.y is None:
            return

        # Encapsulate int coordinates in FieldElement
        self.x = FieldElement(self.x, self.curve.field)
        self.y = FieldElement(self.y, self.curve.field)

        # Verify if the point satisfies the curve equation
        if self not in self.curve:
            raise ValueError

    def __add__(self, other):
        #################################################################
        # Point Addition for Pā‚ or Pā‚‚ = I   (identity)                  #
        #                                                               #
        # Formula:                                                      #
        #     P + I = P                                                 #
        #     I + P = P                                                 #
        #################################################################
        if self == I:
            return other

        if other == I:
            return self

        #################################################################
        # Point Addition for Xā‚ = Xā‚‚   (additive inverse)               #
        #                                                               #
        # Formula:                                                      #
        #     P + (-P) = I                                              #
        #     (-P) + P = I                                              #
        #################################################################
        if self.x == other.x and self.y == (-1 * other.y):
            return I

        #################################################################
        # Point Addition for Xā‚ ā‰  Xā‚‚   (line with slope)                #
        #                                                               #
        # Formula:                                                      #
        #     S = (Yā‚‚ - Yā‚) / (Xā‚‚ - Xā‚)                                 #
        #     Xā‚ƒ = SĀ² - Xā‚ - Xā‚‚                                         #
        #     Yā‚ƒ = S(Xā‚ - Xā‚ƒ) - Yā‚                                      #
        #################################################################
        if self.x != other.x:
            x1, x2 = self.x, other.x
            y1, y2 = self.y, other.y

            s = (y2 - y1) / (x2 - x1)
            x3 = s ** 2 - x1 - x2
            y3 = s * (x1 - x3) - y1

            return Point(
                x=x3.value,
                y=y3.value,
                curve=secp256k1
            )

        #################################################################
        # Point Addition for Pā‚ = Pā‚‚   (vertical tangent)               #
        #                                                               #
        # Formula:                                                      #
        #     S = āˆž                                                     #
        #     (Xā‚ƒ, Yā‚ƒ) = I                                              #
        #################################################################
        if self == other and self.y == inf:
            return I

        #################################################################
        # Point Addition for Pā‚ = Pā‚‚   (tangent with slope)             #
        #                                                               #
        # Formula:                                                      #
        #     S = (3Xā‚Ā² + a) / 2Yā‚         .. āˆ‚(YĀ²) = āˆ‚(XĀ² + aX + b)    #
        #     Xā‚ƒ = SĀ² - 2Xā‚                                             #
        #     Yā‚ƒ = S(Xā‚ - Xā‚ƒ) - Yā‚                                      #
        #################################################################
        if self == other:
            x1, y1, a = self.x, self.y, self.curve.a

            s = (3 * x1 ** 2 + a) / (2 * y1)
            x3 = s ** 2 - 2 * x1
            y3 = s * (x1 - x3) - y1

            return Point(
                x=x3.value,
                y=y3.value,
                curve=secp256k1
            )

Point at Infinity

Also known as the identity point, it is the third point where P and Q meet, in the figure below.

We can initialise the point at infinity like this:

I = Point(x=None, y=None, curve=secp256k1)

Resources

Last updated