Recall from the discussion in Group Theory, we learnt how a generator point can be added to itself repeatedly to generate every element of the group. In this section, we'll understand how to perform this addition, and implement it in Python.
The theory behind point addition
To add two points Pand Q on an elliptic curve, find the third point R where line joining P and Q intersects. This value of R is equal to ā(P+Q). Reflecting the point along the X-axis will give us P+Q.
To find the coordinates of the third point of intersection, simply calculate the slope between P and Q, and extrapolate it using the general equation of elliptic curve.
Implementation in Python
from typing import Optional
inf = float("inf")
@dataclass
class Point:
x: Optional[int]
y: Optional[int]
curve: EllipticCurve
def __post_init__(self):
# Ignore validation for I
if self.x is None and self.y is None:
return
# Encapsulate int coordinates in FieldElement
self.x = FieldElement(self.x, self.curve.field)
self.y = FieldElement(self.y, self.curve.field)
# Verify if the point satisfies the curve equation
if self not in self.curve:
raise ValueError
def __add__(self, other):
#################################################################
# Point Addition for Pā or Pā = I (identity) #
# #
# Formula: #
# P + I = P #
# I + P = P #
#################################################################
if self == I:
return other
if other == I:
return self
#################################################################
# Point Addition for Xā = Xā (additive inverse) #
# #
# Formula: #
# P + (-P) = I #
# (-P) + P = I #
#################################################################
if self.x == other.x and self.y == (-1 * other.y):
return I
#################################################################
# Point Addition for Xā ā Xā (line with slope) #
# #
# Formula: #
# S = (Yā - Yā) / (Xā - Xā) #
# Xā = SĀ² - Xā - Xā #
# Yā = S(Xā - Xā) - Yā #
#################################################################
if self.x != other.x:
x1, x2 = self.x, other.x
y1, y2 = self.y, other.y
s = (y2 - y1) / (x2 - x1)
x3 = s ** 2 - x1 - x2
y3 = s * (x1 - x3) - y1
return Point(
x=x3.value,
y=y3.value,
curve=secp256k1
)
#################################################################
# Point Addition for Pā = Pā (vertical tangent) #
# #
# Formula: #
# S = ā #
# (Xā, Yā) = I #
#################################################################
if self == other and self.y == inf:
return I
#################################################################
# Point Addition for Pā = Pā (tangent with slope) #
# #
# Formula: #
# S = (3XāĀ² + a) / 2Yā .. ā(YĀ²) = ā(XĀ² + aX + b) #
# Xā = SĀ² - 2Xā #
# Yā = S(Xā - Xā) - Yā #
#################################################################
if self == other:
x1, y1, a = self.x, self.y, self.curve.a
s = (3 * x1 ** 2 + a) / (2 * y1)
x3 = s ** 2 - 2 * x1
y3 = s * (x1 - x3) - y1
return Point(
x=x3.value,
y=y3.value,
curve=secp256k1
)
Point at Infinity
Also known as the identity point, it is the third point where P and Q meet, in the figure below.
P+(āP)=I
We can initialise the point at infinity like this: